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Nonrelativistic Approximation of Scalar-Tensor 
Theory with Torsion and Intermediate-Range Force 
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In the nonrelativistic approximation of the scalar-tensor theory with torsion, 
deviations from the Newtonian theory expressions of gravity, the gravitational 
spectral shift of light, and the stellar radius are derived. 

1. INTRODUCTION 

In recent years, the possibility of the existence of the intermediate-range 
force and its influence on Earth's gravity and stellar structure have been 
discussed by many authors. For example, the reanalysis of  the EPF (E6tv6s, 
P6kar, and Fekete) experimental data (Fischbach et al., 1986) has suggested 
that there might be a deviation from the Newtonian inverse square law of 
the form 

U(r) = _MGo~ (1 +/.t e -zr) (1) 
r 

where # and &-1 are the strength and the range of the intermediate-range 
force, respectively. Stubbs et al. (1987) have given the constraint on p. 
Measured by Holding et al. (1986), the deviation of the gravity residual in 
deep mines is as follows: 

A g i = 4 r c G o o p l z I Z - 1  ( 1 -  e-ZZ)] (2) 
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where Z is the depth, p is the density of the Earth. Measured by Eckhardt 
et al. (1988), the deviation of the gravity residual on a tower is 

A & -  2rrGoopla (e_Zn - 1) (3) 

where H is the height. 
In order to explain equation (1), O'Hanlon (1972) and Xu (1989) have 

suggested scalar-tensor theories in the Riemann spacetime V4. Clearly, these 
can also explain equations (2) and (3). However, recently de Sabbata et al. 
(1990) and Xu et al. (1991) have suggested that the intermediate-range force 
be explained as a manifestation of torsion in the Riemann-Cartan spacetime 
U4. They show only that, in the weak field linear approximation for a static 
point mass source, equation (1) is obtained from their theories. But they do 
not show clearly whether equations (2) and (3) can be derived from their 
theories. This paper further shows that, in the nonrelativistic approximation 
of the scalar-tensor theory with torsion (Xu et al., 1991), equations (2) and 
(3) can also be derived. The deviations of the gravitational spectral shift of 
light and the stellar radius are found in this paper. Thus, in the next section, 
we briefly review the scalar-tensor model with torsion and the field equation. 
The weak field linear approximate solutions are given in Section 3. In Section 
4, we calculate the gravitational spectral shift of light in the stellar interior 
and at the stellar exterior. In Section 5, we derive an expression for the 
deviation of the gravity residual from the equation of motion for a test 
particle. The Lane-Emden equation, modified to include the intermediate- 
range force, and the fractional change in the stellar radius are obtained in 
Section 6. 

2. MODEL AND FIELD EQUATION 

In the scalar-tensor model with torsion, the variational principle is (Xu 
et al., 1991) 

I[q~R+kL+ e(q~- ~00)2](-g) 1/2 d4x=0 (4) 

where k is a constant, c is a coupling parameter, ~0 is the scalar function, ~00 
is the constant background value for the scalar field ~0, L is the Lagrangian 
density, which clearly does not include (0, for matter, and R is the curvature 
scalar in the Riemann-Cartan spacetime U4 and can be written as follows: 

R = R({. } ) - 4SjSik  k + 2S~kS ikj 

4 
+ Su kSijk (_g)1/2 ((-g)' /2S5 J),i (5) 
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where R({. } ) is the curvature scalar in the Riemann spacetime V4, namely, 
the curvature scalar with respect to the Christoffel symbol. The comma "," 
indicates the usual derivative. S,f is the torsion tensor and is defined as 

Sij k = �89 (Fo g - Fji ~ ) (6) 

where F}  is the connection coefficient in U4. Taking the torsion tensor as 

. k=b  1 k k 
Sy 2 q)- ((p.j6, - eP, i,~; ) (7) 

where b is a parameter which is independent of the spacetime point, then 
(5) becomes 

2 k 6b R = R ( {  " } ) - c0~o-  ~o' q g , k + ~  ~o-l(--g)l/2cp'k),k (8) 

where co = 6b(b + 1) is a new parameter. Substituting (8) into (4) and omit- 
ting the divergent term, we get 

f[q~R({. } ) -  o~q~- l(0'k(0,k+ e(q~-(Oo)2+kL](-g)l/2d4x=O (9) 

By varying gr and ~o in (9), respectively, we obtain the field equations 

c o . ( {  } ) = R ,X{  �9 } ) - �89 } ) 
CO -2 i ,k =r i l j -g  ~ [-1(0)+ (p ((p, ifP,j--EgO.(O ~O,k) 

I 6 - 1  2 +  I - 1  +5 ge~ o (r 5k~p T U (10) 

2e~Oo k 
[Silo+ ( 9 -  ~Oo) T=0 (11) 

2co + 3 2(209 + 3) 

where Rij({-} ) is the Ricci tensor with respect to the Christoffel symbol. 
[-q~o=gijq~,ilj. The vertical bar symbol "["  denotes the covariant derivative 
using only the Christoffel symbol of the metric. According to the Bianchi 
identity, the Einstein tensor G 0({. } ) satisfies the following identity (Xu et 
al., 1991) 

GU({" })l j = 0  (12) 

The energy-momentum tensor of matter T 0. is defined as 

2 3((-g)l /2L) 
Tr (13) (__g) l/2 c3g/j 

T=gaTo. Using (10)-(12), we get that 

T~ (14) 
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3. THE WEAK-FIELD LINEAR APPROXIMATE SOLUTIONS 

For a weak field, we write 

go=rhj+hu, ~0= <po+ ~ (15) 

where r/g is the Minkowskian metric tensor, hg and ~ are small perturbations 
and they are computed to the linear first approximation only. Therefore, 
substituting (15) into (11), we get 

1~0@2~ 1 _V2{ + ~5 +~2{= ~_kpT (16) 

where ,~2= 2g<po/(2aJ + 3) and/1 = 1/(209 + 3). The retarded-time solution of 
equation (16) is 

kp ~ T -zr 
~=~-s  d3x (17) 

where T is to be evaluated at the retarded time. Substituting (15) into (10) 
and introducing the coordinate condition 

(hu-  �89 ~uh),k~ j~ = ~Oo'~,i (18) 

we find that equation (10) becomes 

1 02aij_ kq~olT U (19) --V2aij -~ C2 Ot 2 

where 

I au= h U- ~rhjh- ~ij(O01~ 

The retarded-time solution of equation (19) is 

_k o_A' f x 
a~ 4~ j r 

From equations (17), (20), and (21), we get 

1 hij = a o -  ~ qua - qij~O01~ 

-k~p~ t -CT~d3x+�89  f ~ o r r 

(20) 

(21) 

(22) 
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We discuss two special cases as follows: 
1. For a stationary mass point of mass M, from equations (15) and 

(22), we obtain the weak field approximate solutions 

g44 = 1 + 2 U(r) 
c2 (23) 

g a = _ l  k~ ~ c2M(1 e-Zr) - U  (a = 1, 2, 3) (24) 
8to r 

where 

U(r)= kc4Mtp~ (1 +/ /  e -xr) (25) 
16zrr 

putting k = 1 6 ~ / c  4 and with tpo i = Goo the Newtonian constant of gravitation 
for r ~  oo, then equation (25) becomes equation (1). Since ~,-l>>r for the 
mass separations in laboratory experiments, the constant of  the laboratory 
derived from differentiating (1) to obtain gravity is 

Gt= Goo[1 +/t(1 +A,r) e -z ']  

~G~(1 +/~) (26) 

2. For a static uniform sphere of perfect fluid with mass M, density p, 
and radius R, the nonzero components of the energy-momentum tensor are 

. T~ = -p~5~, T 4 = pC 2 (a, fl = 1, 2, 3) (27) 
k. 

Assuming that its pressure p is very small, i.e., p<<cZp, and substituting 
(27) into (22), we get the solutions in the interior of  the sphere, 

h44 -- c2 3r ) ~3 r 

8~ac:op 1 2 1 2 +~__~_ (~,R+ 1) e -zR s i n h ( ~ r ) - ~  h a ~ -  C2 ~(R -- 5r  ) ~3r 

and the solutions at the exterior of the sphere, 

h44= 2G~M 8rcG~pp 
c2 r c2~3r e-zr[A,R cosh(A,R) - sinh(~,R)] (30) 

h ~ - 2 G ~ 1 7 6  8zGooplt e_Zr[A,R cosh(AR)-  sinh(A,R)] (31) 
c2r c2~13r 
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4. THE GRAVITATIONAL SPECTRAL SHIFT OF LIGHT 

In this section, we investigate the influence of  the intermediate-range 
force on the gravitational spectral shift of  light. The first case to be consid- 
ered is the one in the stellar interior. The condition AR >> 1 is usually satisfied. 
Therefore in the stellar interior at the depth Z (<<R) from the spherical 
surface, we obtain the approximate expression from equation (28) as 
follows: 

h44 ( R_Z )  _ 81"r [ I R 2 F  I Z ( R _  1Z)  .t ~_ (1 -- 1 e-aZ)] 
C 2 /~2 (32) 

At the stellar surface, we get 

h44(R) = 8rrG~Pc2 (�89 (33) 

Thus, we find the gravitational spectral shift of  light 

F 
T i-- ,,(R) L-~ + h~-~ Z-z)-j - 1  

�89 [h44(R)  - h44(R - Z ) ]  

"~ ~ N c2R2 Z (34) 

where 

( g v'~ GtM 7)N=~Z(R-Iz) (35) 

is the gravitational spectral shift of light in the Newtonian theory. The 
deviation of the gravitational spectral shift of  light, due to the existence of  
the intermediate-range force, from the Newtonian theory is 

\ V/ i  \ V / i  \ V /N  

_ GtMI.t 
c2R2 Z (36) 
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From equations (35) and (36), we get the relative deviation of the 
gravitational spectral shift in the stellar interior 

A(~v/v)i_ ( R ) 
I~- (SV/V)N I~ ~ ~--I~ (37) 

In a similar manner, we discuss the situation external to the stellar 
surface. At the height H (<<R) from the stellar surface, we obtain the approxi- 
mate expression from equation (30) as follows: 

h44(R+H)~ 2G~M 2G~M 87rGo~pl~ e_X~i (38) 
C2 R 4 - ~  H C2~2 

Thus we get the relative deviation of the gravitational spectral shift at the 
stellar exterior, 

A((~V/V)e-- ~ (1--e -xs) (39) 
12- (6V/V)N 2A, RH 

Therefore, comparing (37) and (39), we may predict that the deviation of 
the gravitational spectral shift of light according to general relativity will be 
greater in the stellar interior than at its exterior. 

5. THE GRAVITATIONAL ACCELERATION 

In this section, we find the deviation of the gravitational acceleration 
from the Newtonian theory arising from the intermediate-range force. The 
equation of motion for a test particle, derived by means of Papapetrou's 
method and equation (14), is 

d2xi4_ { i} UUk= 0 (40) 
ds 2 j k  

where U ~= dx~/ds is the 4-velocity of particle. Since the speed of the test 
particle is very much less than that of light, then U a ,~0 (a = 1, 2, 3), U 4= 
1. Thus, equation (40) becomes 

dt ~ + c 2  44 =0  (41) 

For the static weak field, equation (41) is written as 

d2x a c 2 c3h44 
dt 2 20x a (42) 
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Substituting (28) into (42), we obtain the gravitational acceleration in 
the stellar interior 

4zrG~p 47rGoopu 
- -  r-~ A3r2 (AR + 1) e-~R[sinh(Ar) - 3.r cosh()~r)] (43) gi(r) = - 3 

Substituting (30) into (42), we obtain the gravitational acceleration at the 
stellar exterior 

G ~ M  4~rG~pg 
ge(r) = r2 A3r2 (1 +3,r) e-Zr[)~R cosh(AR) - sinh(~,R)] (44) 

The difference of the gravitational acceleration at the depth Z (<<R) in 
the stellar interior and at the stellar surface is found approximately from 
equation (43) as follows: 

6 g , -  gt(R - Z )  - g~(R) 

Z 1 =~gN 4lrGip~ [ ,~ .~( l_e_ZZ)]  (45) 
1+/1 

where 

2g~(R) 
•gN -- - -  Z + 41rGlpZ (46) 

R 

is the difference of the gravitational acceleration in the Newtonian theory. 
Therefore, the deviation of the difference of the gravitational acceleration 
from the Newtonian theory in the stellar interior is 

Agi =- t~gl - 6gN 

[ 1 4 ~T~ GI pI~ Z - e-aZ)/ (47) L - ~  (1 l+~u 3 

In a similar manner, we discuss the situation external to the stellar 
surface. From equation (44), we can find the expression of the deviation of 
the gravitational acceleration from the Newtonian theory exterior to the 
stellar surface, 

2~Gtpl.t ( e _ ~ _  1) (48) 
Ag~- ~, (1 + ~ 

where H is the height from the stellar surface. Substituting (26) into 
(47) and (48), then we obtain equations (2) and (3), respectively. 
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As for the Earth, comparisons between the theoretical value of 
equations (47) and (48) and the experimental results are given by Holding 
et al. (1986) and Eckhardt et al. (1988). 

6.  T H E  LANE-EMDEN EQUATION 

In this section, we study a static, spherically symmetrical perfect fluid 
with low pressure; its nonzero components of the energy-momentum tensor 
are 

T~ = - p ( r ) ~ ,  T 4 = p(r)c 2 (a, ]3 = 1, 2, 3) (49) 

Substituting (49) into (14), we obtain the equilibrium equation 

I P,a + ~(P + PcZ)h44,a = 0 (50) 

Substituting (20) into (50), we get 

1 1 
~ 4 4 V a  --  ~ 4 4 ~ 0  l v ~  ) p+pc  2 Vp = - ~(Va44- (51) 

where V is the three-dimensional Laplacian operator. Taking the divergence, 
we get 

V Vp �89 + l 2 1 �9 = -  a~44 v a "~- ~ ~44(P0 1V2~ (52) 

Substituting the static equations (16) and (19) into (52), taking account of 
the low-pressure approximation p<<pc 2, and putting K=16rc/c 4 and 
q~o i = G ~ ,  we get 

V" ( ;  Vp)=-4~rG~p(I + I-I) + �89 

o r  

( 2 1 d  )=-4uG~op(l+p)+�89 (53) l d r ~  p 
r 2 dr 

We assume that the relationship between the pressure p and the density 
p is described by a polytropic equation 

p= Kp 1+Olin (54) 
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where K is a constant. N is the polytropic index. Substituting (54) into 
(53) and introducing new variables 

/ \ I / N  

47rGo~ pl_(1/N)l 1/2j r 
X = L K ~ i  ) r = ~  (56) 

where 

= FK(N+ 1) ~o/m_171/2 
fl L 4JrG~ ~0 / (57) 

we obtain the modified Lane-Emden equation 

x 2 dx x2 - - - (1  + P ) 0 ~ + - -  ~ (58) 
ax/  8Jrp0 

where P0 is the density at the center. The boundary conditions of (58) are 

(0) = 1, ~x (0) -- 0 (59) 

In the absence of the intermediate-range force, then ~ = 0 and ~ = 0, and 
equation (58) becomes the Lane-Emden equation in the Newtonian theory. 

For a static uniform star with density P0 and radius R, we obtain the 
interior solution of equation (16), 

8~p0/~ [Zr-  (1 + ZR) e -zR sinh(Zr)] (60) 
~ -  c2~3r 

Therefore, the Lane-Emden equation (58) for N=  0 is written as 

1 d (  -Z-_ dOl+ I~ 
x 2 dx XZux/  l = - - -  ( l + Zflxo) e-'~XO sinh(Zflx) (61) 

,~/~x 

where Xo = fl-1R. This equation has the solution satisfying the conditions 
(59) 

~9(x) 1 I 2 / ~ =  - ~ x  +Z2fl~(l+Zflxo) e-;~x~ Zflxl sinh(Zflx)l (62) 
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Since the boundary condition at the stellar surface is ~9 (x0)= 0 and taking 
the approximation 2R >> 1, we obtain the expression of the stellar radius, 

R = R N (  1 - 2 ~ ) 1 / 2  ~ RN( 1 - - 4 ~ )  (63) 

where RN = ~f6fl is the stellar radius in the Newtonian theory. The fractional 
change in radius is, from equation (63), 

fiR R -- RN ].1 

RN-- RN 4~2132 (64) 

This result is the same as found by Glass et al. (1987) in another way. 

7. CONCLUSION 

Experimental measurements indicate the reliability of equations (1)- 
(3). Since equations (10) and (12) are satisfied in our theory, we can derive 
not only equation (1), but also equations (2) and (3) in the nonrelativistic 
approximation. Thus, our theory is consistent with experimental results. 

In this paper, we have calculated the deviation of the gravitational 
spectral shift of light. This will provide another possible way to test the 
existence of the intermediate-range force. 
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